skip to main content


Search for: All records

Creators/Authors contains: "Todorovic, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For the US to increase diversity in engineering, Community Colleges (CC) will have to play a significant role. Fifty-six (56%) of all Native Americans, 52% of all Hispanics, and 42% of all Black students in higher education are CC students. Nationally for the Fall 2015 cohort, the overall transfer rate from CCs to baccalaureate institutions is only 31.6%, and a mere 15.5% of all students who start at a CC complete a bachelor's degree within six years. Although there has been a shift in research since the 2000s, researchers are more focused on understanding the role of the receiving institutions. Research on CC admission, retention, and preparing minorities for successful transfer and engineering degree completion is still overlooked. Moreover, most CC students require remediation, which poses additional challenges to engineering enrollment. First-time college students taking remedial mathematics are less likely to major in engineering and to complete an engineering degree at a 4-year institution. With current CC demographics and student remediation needs, community colleges must develop a strategy to increase engineering enrollment, retention, and transfer. We hypothesize that underprepared students will likely enroll and succeed in engineering if provided a contextualized strategy that decrease remediation and provided intentional support that make students feel they belong in the profession. To test this hypothesis, Wright College, an urban open-access CC and a federally recognized Hispanic-Serving Institution (HSI), created frameworks through the National Science Foundation grant to streamline two transitions: 1) High School to CCs and 2) CCs to 4-year transfer institutions. This paper focuses on streamlining the transition from High School to CCs by creating a Contextualized Bridge. The main goal of the Contextualized Bridge is to develop, implement and assess on-ramp strategies for high school students into engineering at CCs. The specific goals are to decrease remediation, increase engineering enrollment, and increase retention and belonging to the engineering profession. The Contextualized Bridge strategies include: 1. address low self-efficacy in the profession due to gaps in math or science skills. 2. develop professional identity by creating a cohort system and promoting socialization activities. 3. alleviate financial barriers by providing a stipend. 4. strengthen connections to Wright College and the profession. 5. build awareness of engineering fields and career opportunities. Outcomes: The Contextualized Bridge was developed with Wright College faculty. It was first implemented in 2019 with 32 participants. After four (4) iterations, Wright College Bridge enrolled 202 diverse participants (70% Hispanic, 12% black, and 25% women). Ninety-five percent (95%) completed the program and enrolled in engineering. One hundred percent of students who completed the Bridge eliminated at least one semester of remedial mathematics, and fifty percent (50%) were directly placed in Calculus 1. Eleven (11) participants in the 2019 cohort transferred to top engineering programs within two years from the Bridge and are on track for bachelor’s degree completion within four years. Most students attribute their success to a cohort system, increased self-efficacy, and a sense of belonging to college and the engineering profession. Future work Wright College will pilot an "Engineering Model Pathway." This pathway will integrate the Contextualized Bridge strategies into high school through dual enrollment to establish belonging to Wright College and the engineering profession early. 
    more » « less
  2. The Guided Pathways initiative is among many reform efforts that have been implemented by hundreds of community colleges in the country. Four main practice areas are intrinsic of Guided Pathways: 1) mapping pathways to students’ end goals, 2) helping students choose and enter a program pathway, 3) keeping students on a path, and 4) ensuring that students are learning. Although this approach is an important step toward successful transfer placement, the Guided Pathways do not address the visible and invisible barriers to student success once students transfer to a 4-year institution. This paper presents a novel and holistic approach to transfer that eliminates visible and invisible barriers to student success. The Holistic and Programmatic Approach for Transfer (HPAT) model includes early and active participation of the 4-year transfer partner, structured within a well-thought-out transfer articulation agreement that builds on a joint commitment to quality and student success. Integral to the agreement is the requirement for the rigor of the curriculum at the community college to match that of the 4-year partner, along with exceptional student support, financial assistance, and mentoring from the point of admission at the community college, through transfer and up to the bachelor's or master's degree completion. Unique to this model is the fully collaborative and holistic approach to admission; curriculum alignment, including content; participation in co-curricular activities; co-advising; co-mentoring; and data sharing that drive continuous improvement. Students in the program are concurrently registered in both the community college and the 4-year partner institution, becoming part of both student communities from the start. These students take classes at the 4-year partner at a discounted price while still enrolled at the community college, thus eliminating curricular barriers, ensuring placement as juniors, and facilitating belonging at the transfer institution. In addition, program-specific courses and activities at the transfer institution aim to eliminate the socialization and adjustment barrier upon transfer, further increasing belongingness to both institutions. Preliminary outcomes promise a ninety-five percent (95%) transfer rate within 2-3 years from admission. The Program's success is attributed to a holistic and programmatic approach for transfer that emphasizes cross-institutional commitment, effective mentoring, rigor, quality, and increases in the engineering profession (measured through a belonging survey and "Appreciative Inquiry" case study interviews). Although this approach is Engineering specific, our model is positioned to revolutionize transfer that can be duplicated for other Science, Technology, Engineering, and Math (STEM) and non-STEM disciplines. 
    more » « less
  3. Wright College, an open-access community college in northwest Chicago, is an independently accredited institution in the City Colleges of Chicago (CCC) system. Wright is federally recognized Hispanic-Serving Institution (HSI) with the largest enrollment of Hispanic students in Illinois. In 2015 Wright piloted a selective guaranteed admission program to the Grainer College of Engineering at the University of Illinois at Urbana-Champaign (UIUC). Students in the Engineering Pathways (EP) program follow a cohort system with rigorous curriculum aligned to UIUC. From this pilot Wright built programmatic frameworks (one-stop intentional advising; mandatory tutoring, near-peer, faculty and professional mentoring; and access to professional organizations) to support EP students. Initial results were positive: 89% transfer rate and 89% bachelor’s degree completion. Building from the EP frameworks, Wright obtained a National Science Foundation (NSF) HSI research grant to expand programs to non-pathway students. Through the grant, Building Bridges into Engineering and Computer Science, the college developed assessment tools, increased the number of 4-year partnerships, and designed and implemented an Engineering Summer Bridge with curriculum contextualized for the needs of the Near-STEM ready students. These students need one to four semesters of Math remediation before moving into the EP. The college measured the Bridge participants' success through analysis of Math proficiency before and after the Bridge, professional identity (sense of belonging) and self-efficacy (the belief that the students will succeed as engineers). Surveys and case study interviews are being supplemented with retention, persistence, transfer, associate and bachelor degree completion rates, and time for degree completion. The key research question is the correlation of these data with self-efficacy and professional identity measures. Preliminary Results: 1) Sixty percent (60%) of the Bridge participants eliminated the remedial Math requirement completely. (Increased Math proficiency) 2) Engineering admission and enrollment doubled. 4) Increased institutionalized collaborations: the creation of a more programmatic admission, advising, transfer, rigorous curriculum, and other student support services within the College. 5) Increased partnerships with 4-year transfer institutions resulting in the expansion of guaranteed/dual admissions programs with scholarships, paid research experience, dual advising, and students transferring as juniors. 5) Increased diversity in Engineering and Computer Science student population. Wright will share an overview of the Building Bridges into Engineering and Computer Science project, research design, expanded practices, assessments and insights from the development and implementation of this program. The developed frameworks will be applied to provide ALL students at Wright, and at CCC equitable Engineering and Computer Science education. 
    more » « less